
IAEA Training in Level 2 PSA

MODULE 6: Level 1 – Level 2 Interface

Outline of Discussion

Objectives of the Level 1-2 Interface
Technical Approach
Examples

Objectives: Level 1-2 Interface

- 1. Add containment system response to probabilistic assessment of accident definitions
 - Level 1 models do not consider containment systems that are not required to prevent core damage
 - Containment response strongly depends on availability of safeguard systems

Objectives: Level 1-2 Interface

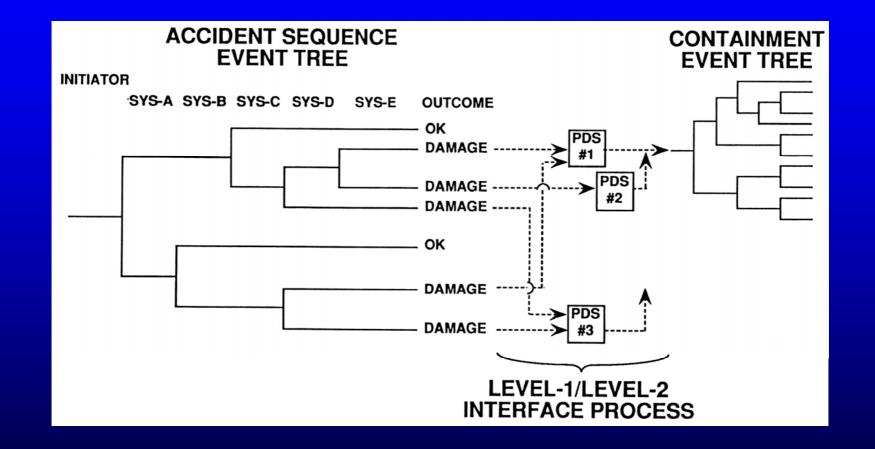
- 2. Identify the minimum number of unique accident scenarios to be addressed in Level 2 analysis
 - The number of accident scenarios should be 'small' to make deterministic analysis practical.
 - Many accident sequences considered in a Level 1 PSA would result in similar accident progression and containment response

Technical Approach

Objective-1: Add containment systems
 Containment safeguards tree or bridge tree

• Objective-2: Minimize number of accident scenarios

⇒Plant Damage State (PDS) analysis



PDS Analysis

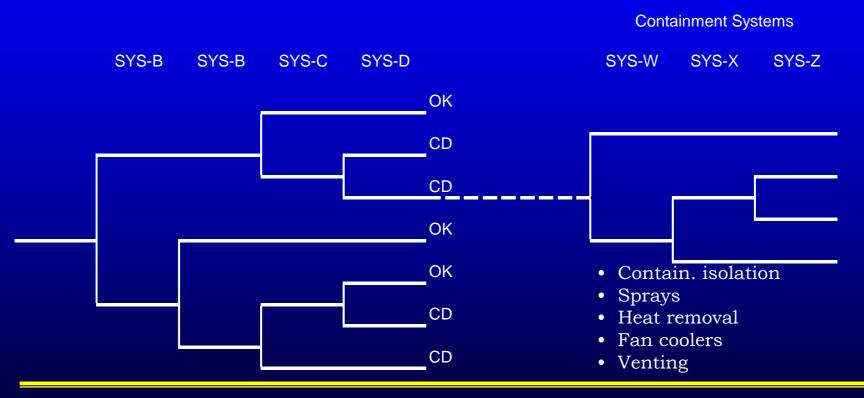
- Procedure: Sort core damage sequences into groups or 'bins' that represent common features of severe accident progression:
 - Accident timing
 - Release pathways for fission products to containment
 - Energy imparted to containment
- → Each PDS represents a unique set of initial and boundary conditions to the analysis of containment response

PDS Binning Process

Sorting or Binning Criteria Define Status of Barriers to F.P. Release

Barriers	Systems
Fuel clad	Reactor power
	Core cooling systems
Reactor vessel	Safety/relief valves
	Reactor coolant system pressure boundary
Containment	Level of isolation
	Heat removal
	Water sources
Retention capabilities	Spray systems
	Pool/sump water
Secondary/Auxiliary building	Ventilation filters
	Building integrity

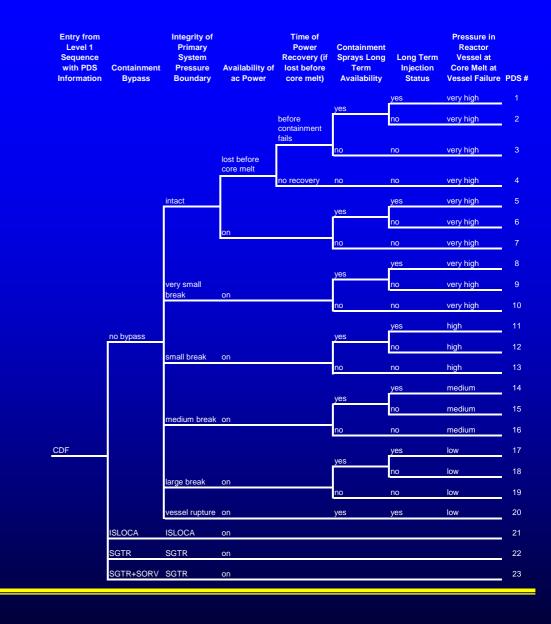
Simple Example


- Sequence 1: Transient, No coolant makeup to reactor vessel
 - Cut Set 1A: T1 * injection valves (T1 = LOSP)
 - Cut Set 1B: T2 * pumps
 - Cut Set 1C: T1 * diesel generators
- Sequence 2: Transient, Coolant injection fails in long-term
 - Cut Set 2A: T1 * heat removal * containment
 - Cut Set 2B: T2 * heat removal * (vent) * pumps cavitate
 - Cut Set 2C: T2 * pump cooling

Cut Set	Coolant Injection	Contain. Isolation	Containment Spray	PDS
1A	Fail	OK	OK	1
1B	Fail	OK	Fail	2
1C	Fail – recoverable	OK	Fail – recoverable	2'
2A	Fail	Fail	Fail	3
2B	Fail	Vent	Fail	4
2C	Fail	ОК	Fail	2

Containment Safeguards Tree

• Extend Level 1 sequence event trees to include containment systems



Examples from Past PSAs

• PDS results presented in several forms

- Graphical (event tree format)
- Tabular (matrix)
- Character string (vector format)
- Content of various forms is the same
 Only a preference in presentation

Graphical format

Tabular format

		Primary Containment Intact at Time of Core Melt?																				
	Yes											No										
Conditions at the		Secondary Building Isolated?													Secondary Building Isolated?							
time of		Yes									No				Yes							
brea		Ventilation OK?													Ventilation OK?				No			
		Y	′es (A)		No (B)				(C)				Yes (D) N			(E)	(F)				
	Water on Contain. Floor?	Wa	ater to	Core	Debri	s?	Water to Core Debris?				Water to Core Debris?					H ₂ O to debris?		H ₂ O to debris?		H ₂ O to debris?		
			Yes				Yes						Yes									
		Containment				Containment						ntainm										
Vessel		cooled? N			0	Cooled?			No		C	cooled?		No		Yes	No	Yes	No	Yes	No	
pressure			N					No						No								
		Yes (I)	Vent	1	Vented? Yes	Yes	Vent		Vented?		Yes	S Vented?		Vented?								
			Yes (J)	No (K)	Yes (L)	No (M)	(I)	Yes (J)	No (K)	Yes (L)	No (M)	(I)	Yes (J)	No (K)	Yes (L)	No (M)	(K)	(M)	(K)	(M)	(K)	(M)
High																						
	Dry																					
Low	Wet																					

Character string format

H.P. Station Blackout: T1-B2-X

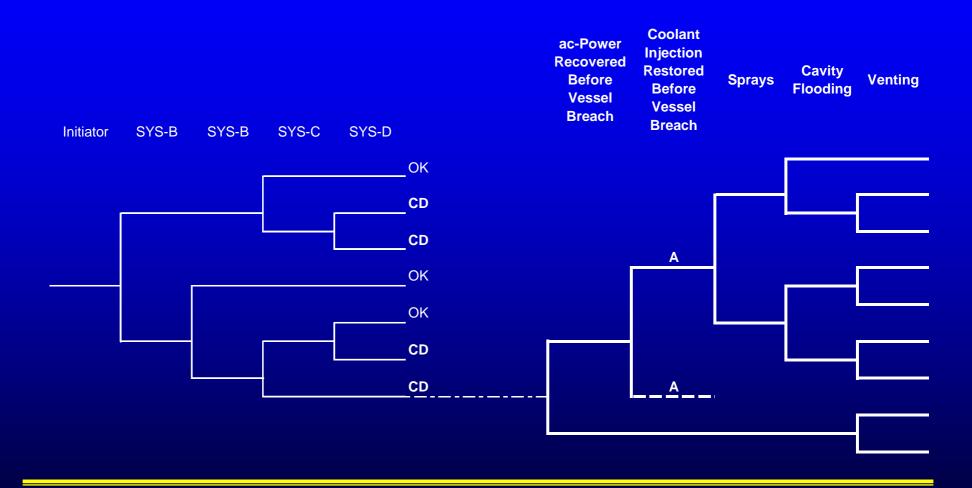
SLOCA without heat removal: S2-U2-W

	Attribute	State Identifier	State Description
(1)	Initiating event	A S1 S2 V T1 T2 T3	LBLOCA: Large ¹ LOCA IBLOCA: Intermediate LOCA ² SBLOCA: Small ³ LOCA LOCA outside containment TLOP or PLOP: Loss of offsite power SORV: Stuck-open SRV/PRV Other transients
(2)	Reactor status	 C	Scram; no fission power Power above decay heat (no scram)
(3)	Electric Power status	 B1 B2	Electric power available Onsite ac power failed, dc OK Onsite ac and dc power failed
(4)	Vessel pressure at onset of core damage	×	Vessel depressurized ⁵ Vessel at high pressure ⁶
(5)	High pressure coolant injection status	 U1 U2	HPI available as required HPI operates until batteries exhausted HPI not available
(6)	Low pressure coolant injection status	v	LPI available LPI not available
(7)	Containment heat removal status	 W	RHR available RHR not available
(8)	Containment	 Y1 Y2	Intact (design basis leakage only) Failure of containment isolation Containment venting successful

Dependencies

- Containment safeguards tree(s) must be directly coupled to Level 1 sequence events trees to properly handle dependencies
 - Shared components
 - Common support systems
 - Prior human actions

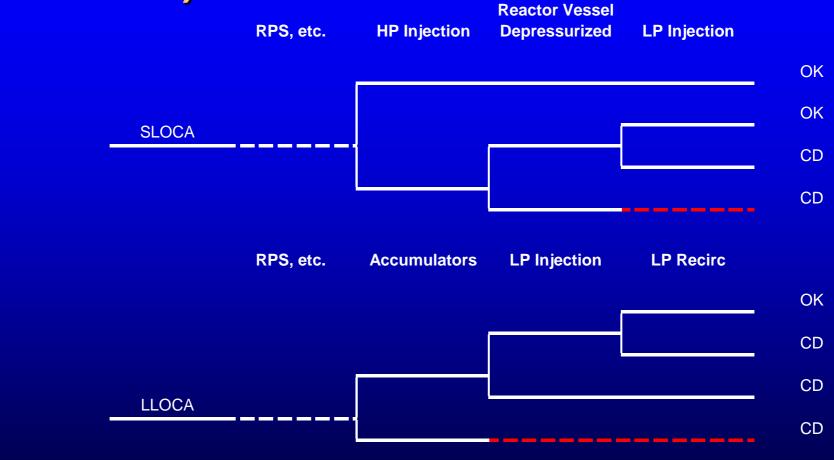
An Optional Extension


(Containment Safeguards → Bridge Tree)

• Extend period of accident recovery to vessel breach

- Restoration of ac power after onset of core damage
- Post-core damage operator actions (severe accident management guidelines)
 - * Reactor vessel depressurization
 - * Reactor cavity flooding
 - * Containment venting
- Requires some knowledge of timing of in-vessel core melt progression

Example Bridge Tree



Final ISSUE: Resolution of the Status of 'Abandoned' Systems

- The status of certain systems important to the Level 2 may be 'unknown' from the Level 1
 - Sequence event trees ignore branches at locations where success criteria have already been violated
 - Success or failure not decisive for preventing core damage, but can influence subsequent severe accident progression
- Example: LOCA with failure of one part of injection success criteria

Examples of Unresolved System Status (LP-ECCS)

Summary

- Level 1 Level 2 Interface is an <u>analysis</u> task
 - Couple Level 1 core damage sequence information with new information on containment system availability
 - Translate sequence cut sets to initial and boundary conditions for analysis of containment response
- Supporting deterministic analysis (code calculations) may be necessary to properly group 'similar' accident sequences

